
SIMCON CDC VERSION 2

IMPLKMENTOR'S GUIDE AND

REFERENCE MANUAL

March, 1982
Updated February, 1983

Sea Grant Publication No. QRESU-H$-83-00~

E. L. Beals

Department of Fisheries and Wildlife
Oregon State University
Corvallis, Oregon 97331

TABLE OF CONTENTS

Page

In t r oduc ti on

~ 2Method and Conditions of Distribution

FORTRAN IV General Compiler Dependencies ~ ~ ~ 4

~ ~ 0 5Comments on Upgrading to FORTRAN V

System Dependent Functions ~ ~ ~ 6

Basic Character Manipulation 6

Machine Configuration and Parameters 9

10File Input and Output

General Systems Functions

Optional Routines for System Extended Functions 12

The SIMCON Main Program and Overlays ~ ~ ~ ~ ~ ~ 13

Loading Considerations 1.7

An Implementation Checklist

The SIMCON Operating Algorithm

~ ~ o ~ ~ ~ 19

22

Appendix A: Alphabetical list of routines and calling sequences... 25

Appendix B: Alphabetical list of common blocks and parameters . . . 81

INTRODUCT ION

SIMCON CDC Version 2 is written in FORTRAN IV and is a modified and

extended version of the program developed originally for an IBM 370 computer

at the Institute of Animal Resource Ecology, University of British Columbia,

Vancouver, B.C., by Ray Hilborn, Bill Webb and Jeff Stander in 1976. This

version can be implemented without modification on Control Data Corporation

 CDC! 170 series, 70, and 6000 series computers under the Network Operating

System NOS! ~

This document serves as an aid to the implementation and maintenance

of SIMCON on general computer systems and as a reference guide to the SIMCON

a1gorithm and subprogram functions. The reader of this guide should have

available a copy of the user's guide to the SIMCON language for SIMCON CDC

Version 2 entitled SIMCON � A Simulation Control Lan ua e at Ore on State

University, 1981, Sea Grant Publication No. ORKSU-HL-83-00L.

This work is a result of research sponsored by NOAA Office of Sea

Grant, Department of Commerce, under Grant No. NA79AA-D-00106 Pro]ect

No. R/OPF-I!. The U.S. Government is authorized to produce and distribute

reprints for governmental purposes notwithstanding any copyright notation

that may appear hereon.

METHOD AND CONDITIONS OF DISTRIBUTION

SIMCON CDC Version 2 is available without fee from:

Eric A.. Rexstad
Department of Fisheries and Wildlife
Oregon State University
Corvallis, Oregon 97331

and is distributed with the condition that any published material reflect the

original sources of SIMCON.

SIMCON versions and documents designed for IBM, DEC, and other machines

are available as well from the University of British Columbia. For exact

information regarding these other versions, write to:

Dr. Ray Hilborn
Institute of Animal Resource Ecology
University of British Columbia
Vancouver, B.C. VGT 1W5
Canada

Fersons requesting SIMCON CDC Version 2 should provide a 600 ft. magnetic

tape and specify the tape format as completely as possible. SIMCON CDC

Version 2 will consist of 12 files with the following information. The SIMCON

source. code files are described in more detail on page 13 ' !

Pile 1

File 2

Pile 3

File 4

File 5

File 6

File 7

File 8

File 9

File 10:

File 11:

File 12:

SIMCON source code: zero level overlay segment �,0!, 979 Lines.
SIMCON source code: overlay segment �,0!, 600 lines.
SIMCON source code: overlay segment �,1!, 2261 lines.
SIMCON source code: overlay segment �,2!, S13 lines.
SIMCON source code: overlay segment �,0!, 122 lines.
SIMCON source code: overlay segment �,0!, 127 lines.
SIMCON symbol table data, 7 lines.
SIMCON library source deck, 346 lines.
Model test program, 76 Lines ~
Test program COMMON file, 2 lines.
Checkout procedure, 142 lines.
Checkout procedure verify output, -400 lines.

In general, the information on tape can be sent in the following ways:

7 track

9 track

For CDG users, information can be sent uncoded binary with odd parity! in

internal display format that can be directly transcribed to mass storage files.

parity:
density-
character set:
label options:
b locking:
f ile separators:

parity:
dens ity:

character set:

label options:

blocking:
file separators:

even
556 or 800 bpi
CDC External BCD
unlabelled
any size, 80 column card image format
imbedded tape marks

odd
800 or l600 bpi
EBCDIC or ASCII
unlabelled or standard ANSI
any size, 80 column card image format
imbedded tape marks or ANSI end-of-file labels

FORTRAN IV GENERAL COMPILER DEPENDENCIES

labelled and blank common blocks ~st be available and it must be
possible for some occurrences of a common block to be shorter than
the first.

The number of words or bytes! required to hold a real number est
be at least as many as for an integer.

2 ~

It must be possible to store an integer in a real variable aad later
extract it as an integer via equivalenced integer and real variables.

3 ~

It mat be possible to access variables ia a common block by sub-
scripting into an array whose first element is equivalenced to the
first element of the common block.

It must be possible to pass aa arbitrary array element to a subroutine
to be treated as if it were the first element of the formal array
argument. For example, the fourth element of the array BUFF is passed
to a subroutine which acts as if that elemeat represents the first
element of the dummy array.

The compiler should accept the type identifier "INT EGKR" including
the blank as it is showa! for the variable type "INTEGER". This is
a convention used to identify varibles that were originally LOGICAL*l"
type on some IBM and PDP systems. Most often, but not exclusively!
these variables serve to manipulate character data.

6 ~

7. If it is not otherwise possible to directly compare character data
stored in Al format, there must be some mechanism for doing this
such as an escape to assembler language or other local routines.
Direct character comparisons are made exclusively by one primitive
level function subprogram.

SIMCON CDC Version 2 is writtea in ANSI 66 Standard FORTRAN except for

routines performing specialized functions for which there are no ANSI 66

staadards aad for a few commonly found non-ANSI usages which are included

in the list below. Specialized noa-standard fuactioas are organized into

a few routines to permit easier substitutions by local routines. All

noa-standard functions are documented in this guide.

Certain features not always found on FORTRAN IV compilers are essential

for the operation of SIMCON. Among the special properties are the following:

8. There must be some means of performing indexed read and write
operations on mass storage files, either indexed sequential
or random access'

9. Hollerith constants must be allowed in data statements. All
Hollerith constants in SIMGON are of the form "lHa".

10. It must be possible to dimension a variable in a type or common
s tatement. There are very few DIMENSION statements in SIMCON.

11. Logical type functions and variables must be supported.

12. G format conversions should be available. If not, a few output
routines must be changed to use E or F formats.

13. Subscript expressions containing references to subscripted
variables or 2 or more variable elements should be permitted.

14. Frequent use is made of DATA statements to define character
arrays. It is expected that the order of a data item in the
list vill imply the array element to be assigned the first
character from the left is assigned to element 1, the second
is assigned to element 2, etc.!. Subscripts or implied DO
loops within DATA statements are not used.

15. This version of SIMCON is very nearly the full operating version on
the GDC GYBER at Oregon State University. It is not expected that
the completely compiled, linked, and loaded program will fit all at
once in core memory. Therefore, there must be a means of splitting
the loaded program into sections or overlays. SIMCON is distributed
as separate files with the anticipation that each file of sub-
programs may form an overlayed program segment.

COMMENTS ON UPGRADING TO FORTRAN V

In order to upgrade this version of SIMCON most easily, the FORTRAN V

compiler should have the following extension beyond the ANSI 77 standard as

well as support all the features listed in the preceeding section: The

FORTRAN V compiler must accept the use of Hollerith constants and input alpha-

numeric data into integer variables with the Al forrrrat conversion in the same

manner as the FORTRAN IV standard compiler. It will not be possible to

directly subs titute the "CHARACTER+1" type declaration statement in the place

of the "INT EGER" specif ication.

SYSTEM DEPENDENT FUNCTIONS

For the greatest ease of conversion to other systems, system dependent

functions and parameters have been isolated in as few routines as convenient ~

The following discussion lists classes of system dependent routines and

describes their functions. The detailed calling sequences of the subprograms

listed are not given here, however, they may be found in the alphabetical

listing of routines in Appendix A.

Sasic Character Manipulation:

As a standard means of character handling, an operational concept of the

"byte" was devised. A "byte" is defined as the smallest, directly addressable

unit of memory capable of storing a single character. On various computers

a "byte" can have a variety of manifestations. The simplest and most straight

forward implementation of this concept is to set one integer element equiva-

lent to one "byte", often one full word of memory. The "byte" defined in this

manner should operate successfully for all machines. Many machines, however,

are capable of directly addressing units of memory smaller than an integer

element and for these machines, the "byte" can be defined to exploit this

property thereby utilizing space more efficiently. Once the "byte" is

defined, a "byte" may store a single character or the "byte" can be used as

the basic unit of addressable storage to index blocks of mixed type variables.

In the SIMCON source code, the type identifier "INT EGER" is the

convention employed to designate variables whose elements are implied to be

'byte" sized. If the "byte" is defined equivalent to one integer element,

the identifier "INT EGER" need not be edited; the FORTRAN IV compiler will

ignore the space and interpret it as "INTEGER". If the "byte" is defined to

a size smaller than an integer element, all occurrances of type "INT EGER"

must be changed to an appropriate type such as "LOGICAL*l" for an IBM 370

computer!, The definition of the "byte" and other machine parameters are

made in the BLOCK DATA subprogram described on page 9.

It is advised, however, that for a byte addressable machine, SIMCON

be made to operate first with the "byte" defined as an integer element since

this is the form running on the CDC CYBER. SIMCON CDC Version 2 has undergone

considerable revision on the CYBER since its arrival in 1976 and it may be

that in some places, the "INT EGER" specification has not always been faith-

fully transcribed.

The following subprograms manipulate characters at the most primitive

level. They are system dependent and will need to be re-written to fit each

local implementation. Refer to the alphabetical listing of routines in

Appendix A for the exact calling sequences and parameter definitions.

LOGICAL FUNCTION EQC

compares a single character stored in one byte in Al format
with another character stored in one byte. EQC returns the
value . TRUE. if they are equal and .FALSE. if they are not.
EQC is considered system dependent since some machines
cannot directly compare character data and must resort to
intrinsic Boolean functions or assembly language.

SUBROUTINE PBYTE

moves one character stored in one "byte" in Al format to a
specified bit position within an integer element. It is
expected that this function would be performed with local
intrinsic Boolean functions such as MASK, AND, SHIFT, etc.
This subroutine and subroutine GBYTE recognize that parti-
cularly for word addressable machines, characters stored in
integer sized "bytes" are not usually space efficient and it
would therefore be desirable to store large amounts of
character data in a more compact form.

SUBROUTINE GBYTE

retrieves a "packed" character from an integer element
and stores it in one "byte" in Al format.

Although it was originally intended that active character manipulation

be done with "unpacked" characters and that "packing" serve only to store

large amounts of character data economically, the temptation to manipulate

packed characters directly proved too much to resist on the CYBER unfortu-

nately, perhaps, for users of other machines!. Thus, routines parallel, to

the basic character manipulation routines were developed to manipulate packed

characters. Most of these routines are of course machine dependent, however,

the calling sequences are identical to their unpacked counterparts. Thus, for

a machine whose representation of packed and unpacked characters are function-

ally equivalent such as the IBM 370!, the two types of routines could be

coded identically or duplicate entry points can be defined for the original

routines.

LOGICAL FUNCTXON EQC2

analogous to EQC, EQC2 compares two packed characters for
equality.

LOGICAL FUNCTION EQCMP2

analogous to EQCMP EQCMP is a system independent routine!,
EQCMP2 compares two packed character strings for equality.
This routine is provided in a system independent form using
EQC2 to perform a character by character comparison. However,
it has since been found for a word addressable machine
onlyt! that a ten to twenty percent reduction in average
execution time can be realized by streamlining the code of
KQCMP2 as completely as possible such as eliminating the
call to EQC2 and incorporating its code!.

SUBROUTINE ÃOVEST

moves a substring consisting of packed characters from one
area of memory to another. Its calling sequence is identical
to MAVEC a system independent routine which moves characters
stored in "bytes"!. This routine is provided ia a system
independent form using a character by character move with
PBYTK and GBYPTE but this jm'thod is not efficient.

Machine Confi uration aad Parameters:

Certain parameters and common block lengths are dependent on the

particular machine and on the definition of the "byte" see page 6!.

All machine dependent parameters and common blocks are localized and

defined in 5 block data subprograms or subroutines. If the local FORTRAN IV

compiler does not allow more than one block data subprogram, some can be

converted to subroutines or combined into one block data subprogram. Except

for subroutine CONFIG, these routines must be loaded into the zero level

overlay program segment of SIMCON See the SIMCON Main Program and Overlays,

page 13!. Refer to Appendix B for the exact definitions of the parameters

and common blocks listed.

BLOCK DATA unnamed!

defines block lengths and machine dependent parameters in the
f ollowing blocks:

/NBCM/ /ZZZZ/ /MP ST/ /MKRF/ /WKSP/
/MET/ /CS TACK/ /ATCMD S/

SUBROUTINE CCOM

is a user defined library Loaded subprogram to define the
size of the blank common block.

BLOCK DATA DEPCMD

defines and initializes the SIMCON command list in the
following blocks:

/CMDLST/ /CMDNUM/

BLOCK DATA HCOM

is intended as a library loaded subprogram which defines
and sets parameters in the common block /KCC/.

SUBROUTI~iK CONFIG

sets a parameter in the common block /KCC/ at execution time
 by an executable assignment statement!. This routine is
contained in the initialization overlay segment �,2!; it must
not reside in the zero level overlay as it may interfere with
the library loaded block data subprogram HCOM.

File In ut and Output:

These routines perform I/O functions for indexed direct access files and

other file status processing for which there are no standard methods in

FORTRAN IV.

SUBROUTINE REED

inputs a command image or character string data from a
sequential file into a "byte" array. REED is included here
since it performs a test for an end-of-file condition which is
non-standard.

SUBROUTINE UCOMIO

processes indexed read and write operations to a scratch
file used to store blank common block images. A11 records
read or written are of the same length.

SUBROUTINE MACI0

processes indexed read and write operations to a file used
to store SZMCON command macros. Record lengths vary but can
be standardized. No macro is longer than the buffer used�
nominally 2000 "byte" elements.!

General S stems Functions:

 See also comments contained in the individual routines for more aid in the
local implementation.!

SUBROUTINE SY INIT

performs system dependent functions during initialization,
usually opening and initializing files.

SUBROUTINE SYSFN

performs system dependent functions required during appropriate
phases of SIMCON execution such as closing, re-opening, rewinding
files, error recovery, etc.

LOGICAL FUNCTION SYSTAT

tests for relevant operating system conditions during execution
such as attention interrupts or job origin.

12

Optional Routines for System Extended Functions:

SUBROUTINE SYSCMD can be designed. as a small auxiliary command processor
to perform operating system commands or any other useful system
function upon request. SYSCMD is called for any command which
is preceeded by the dollar sign $!. SYSCMD is provided as a
dummy routine.

SUBROUTINE CMDFIL is used to process a special system request resulting
from the SIMCON "READ" command to attach a file to the job and
open it as a SIMCON "batch" or data file. This is not a straight
forward operation for the CDC CYBER. Other systems may find it
more appropriate to perform this operation in other existing
routines such as SYSCMD or SYSFN. CMDFIL is provided as a dummy
routine.

13

THE SIMCON MAIN PROGRAM AND OVERLAYS

The main program for SIMCON CDC Version 2 opens files with the program

statement and switches between the overlay main routines which perfor~ the

major functions. Systems other than CDC which do not use the program state-

ment to open files! will perform these functions in subroutine SYINIT. The

calls which result in the loading of the appropriate overlay program segment

are accomplished by the CALL OVERLAY statement on the CDC CYBER. The comments

in the main program describe the function of the overlay program segment being

loaded at the time and the name of the particular routine where program control

is actually being transferred in a manner similar to a subroutine call. The

controlling algorithm has been carefully constructed such that two consecutive

calls to the same overlay never occur; a return from a secondary overlay to the

SIMCON main routine automatically implies that a new overlay is to be loaded.

Figure 1 illustrates the overlay structure of SIMCON and their relative

positions in memory. The overlays are organized such that any routine may

reference any other routine in the same overlay and any routine in an overlay

loaded at a lower address in eessory at the I'lee. SINCON does not require local

common blocks or variables to be re-initialized to original values or set

to their a+st recent values; all such variables are explici.tly redefined

each time a routine is called in a newly loaded overlay. All overlay

communication is effected through global common blocks and variables

contained in the zero level overlay which must never be unloaded from

memory.

Switching control is accomplished through the flag variables in common

block /OVTALK/. These switches are set only by main overlay routines. Refer

to Appendix B for the definition of common block /OVTAM/ and these switches.

Figure l. The overlay structure of SIMGON in memory. The main progra~
 SQiCON! and OVERLAY �,0! is loaded first and remains in memory
throughout execution. All global common blocks reside here.
At any given level, only one overlay can be loaded. at one time
and all program references are within the same overlay or to
overlays loaded lower in memory concurrently. Routine S~ in
OVERLAY �,0! explicitly causes the loading oi' either MS'ih.a or
lNIT. During command input from a terminal, for example, the
overlays containing SIMCON, SHAK and HASThk would be currently
loaded in memory.

15

The SILICON CDC Version 2 source code is organized into six overlay program

segments in separate files. The first program unit in each file is the main

overlay routine to which program control is transferred when the overlay is
loaded. Sy CDC CYBER convention, each of these main overlay routines begin

with a PROGRAM statement instead of SUBROUTINE. The first file contains the

root or zero level overlay [OVERLAY �,0!] which is loaded first and remains

loaded during all phases of SILICON execution. The zero level overlay contains

utility routines and common blocks that are used by all other secondary over-

layss.

File 2 contains more utility routines used by other overlays. Routine

SHAR is the main program unit for this overlay [OVERLAY �,0!].

File 3 contains the routines responsible for the individual command

functions and the master control and cycling program [OVERLAY �,1!]. The

master program routine MASTER! requests user command input and invokes the

appropriate command function. Routine MASTER makes the decisions of the over-

lays to be loaded when necessary and sets the proper switches for the SINCOH

main program.

File 4 contains initialization routines executed only once. Routine INIT

is the main program unit for this overlay [OVERLAY �,2!].

File 5 contains the user model monitoring routines. The loaded overlay

[OVERLAY �,0!] also will contain the user model routines. Routine DOLL is

the main program unit.

16

Pile 6 separates the graphics functions from the main body of commands.

Graphics functions will almost always have to be written locally for each

computer system. The implementation of the graphics functions can be

delayed unti1 the major part of SXMCON is operating satisfactorily by

providing a dummy subroutine in place of routine PI,T52, the main program

unit for this overlay [OVERLAY �,0!] ~

17

Loading Considerations

Library searching � the order of search should be:

1. the model and associated optional routines,

2. the SIMCON library, SIMLIB,

3. the FORTRAN and system libraries.

It is convenient from the user's point of view to library load certain

subprograms that are not necessarily referenced by CALL statements! in

order to fix important COMMON blocks at user determined lengths at. load

time. If it is possible to instruct the linker-loader to load these

routines into the zero-level overlay, do so. If not, fix these routines

into the zero level overlay and define the block lengths and parameters

to convenient defaults.

SUBROUTINE CCOM

Library loaded from the user's model or the SIMCON library,
CCOM defines the size of the blank COMMON block at load time.
The blank COMMON block is reserved solely for the user's use.
 See Part II of the SIMCON user's manual, "The FORTRAN
Prograranmr's Guide', page 30.!

SUBROUTINE DRAND

Library loaded from the SIMCON library. DRAND is a random
number utility routine.

SUBROUTINE DRSET

Library loaded from the SIMCON library, DRSET is a random
number utility routine.

BLOCK DATA HCOM

Library loaded from the SIMCDN library, HCOM defines a
COMMON block at load time. See pages 10, 19.

18

Figure 2.

The SIMCON loading procedure on the CDC CYBFR 170 Model 720, Network
Operating System NOS!. The basic steps are: making the files SUPCOM
 SIMCON internal data!, SIMLIB SIMCON library!, and SVIBIN SIMCON
object deck! local to the job; building a library file from the user
model object deck BMODL!; instructing the loader to force the loading
of CCOM, DRAND, RANSET a random number generator from the FORTRAN
library!, and HCOM even though they do not necessarily satisfy external
references; then defining the library search order. The absolute load
module is placed on the file SIMCON named on an OVERLAY directive in
the SIMCON object deck!. The field length required is approximately
27000, 60 bit words on the CYBBR.

. PI':OC, S T.5.

I!FFSlJ�!
I F E . O T= T < O, T I?t E S N A Ft' E, 0 R I 6 I N j O 8

OjvSg I !

ENOIF, i I?IE HARE.

!ETl'L,30.

IlETUI.N. SInCIjN,OL.
CET, SUP CON, SISAL I II/LIN=AA VI7?!,
ATTACH, SI?!BIN/LiN=AAVI7?!.
I IBGEN.F=B?IODL,P=GL.

BSET LiSE=CCO?l/BRAND 'I ASSET. USEI-'=HCOI| l
LBSET LIB=QL/SII",LIB/OSULIB/CO?!PLOT!
I O A II S I?! 3 I I! !

NOOO.

RETURN. OL. SILL I3, SINBIN.
REVERT. SI?!CON GENERATION COMPLETE
Wt?EVERT.CCL

19

AN IMPLEMENTATION CHECKLIST

1. Separate the files from the tape into separate files on mass
storage, page 2. In particular, File 7, SIMCON symbol table
data, call it "SUPCOM"; File 10, test program COMMON block,
call it "COMMON"; and File ll, checkout procedure, call it
"BATCH".

2. Obtain a complete listing of all files.

3. Edit the SIMCON source code to set parameters and COMMON
block lengths appropriate for this installation-

a. BLOCK DATA unnamed!, in overlay segment �,0!

i! Define the "byte", page 6: For the first attempt
at running SIMCQN set the "byte" equivalent to a
full integer elejm'nt one word! by setting parameters
in block /NBCM/. See the block description in
Appendix B.

ii! For all COMMON blocks in BLOCK DATA unnamed!, determine
their lengths and parameter settings. Refer to the
individual block descriptions in Appendix B.

b. BLOCK DATA DEFCMD, in overlay segment �, 0!

i ! Set block lengths, parameters, and data for each block.
Note that the command names are packed in sequential
elements, each element comprising of the same number
of full integers in this case, 2 words holding 10
characters apiece, left justified, blank filled!.
See individual descriptions in Appendix B.

ii! If named BLOCK DATA subprograms are not permitted by
the local compiler, incorporate BLOCK DATA DEFCMD
within BLOCK DATA unnamed! ~

c. BLOCK DATA HCOM, in the SIMCON library source deck

i! Set block lengths and parameters. See Appendix B.

ii! If named BLOCK DATA subprograms are not permitted,
change BLOCK DATA HCOM to SUBROUTINE HCOM.

d. SUBROUTINE CONFIG, in overlay segment l.,2! sets a parameter
at execution time. See Appendix B.

20

Modify character manipulation routines. Modifications
necessary will depend on the particular installation,
see page 7. Refer to Appendix A for the function
descriptions and calling parameters.

a. LOGICAL FUNCTION EQC in overlay segment �,0!

b. SUBROUTINE PBYTE in overlay segment �,0!

c. SUBROUTINE GBYTE in overlay segment �,0!

d. LOGICAL FUNCTION EQC2 in overlay segment �,0!

e. LOGICAL FUNCTION EQCMP2 in overlay segment �,0!

f. SUBROUTINE HOVEST in overlay segment �,1!

5. Modify system dependent I/O functions, page ll. Refer
to Appendix A for the function descriptions and calling
parameters.

a. SUBROUTINE REED in overlay �,0!

b. SUBROUTINE UCOMIO in overlay �,0!

c. SUBROUTINE MACIO in overlay �,0!

6. Modify general systems function routines, page 11. See
especially the comments within the individual routines
for aids to the necessary changes, Refer also to
Appendix A.

a. SUBROUTINE SYINIT in overlay segment �,2!

b. SUBROUTINE SYSFN in overlay segment �,0!

c. SUBROUTINE SYSTAT in overlay segment �,0!

7 ~ Overlay main routines, page 13. Modifications depend
on the local installation, particularly the OVERLAY,
CALL OVERLAY, and PROGRAM statements.

a. PROGRAM SIMCON in overlay segment �,0! This is
the main program. !

b. PROGRAM SHAR in overlay segment �,0!

21

c. PROGRAM MASTER fn overlay segment �,1!

d. PROGRAM INIT in overlay segment �,2!: Note that
some system dependent parameters not aentioned
previously are defined here and a non-standard
end-of-file test is performed on unit 12 twice.
See the comments in the source code for a guide.
See also Appendix B, COMMON block /SZZCOM/.

e ~ PROGRAM DOMDL in overlay segment �,0!

f. PROGRAM PLT52 in overlay segment �,0!: For the
first attempt, temporarily short-circuit this overlay
with a RETURN statement. This overlay exclusively
produces output for graphic terminals or other devices
and its modification can be deferred to a later time.

8. Instructions to the linker-loader, page 17.

a. Establish the library search order.

b. Determine the aethod to force-load the routines listed
on page 17 from the libraries into the zero-level
overlay if it is convenient.

9. Compile SIMCON, the SZMCON library, and the test model.

10. Link and load SIMCON

11. Run SIMCON: SIMCON will attempt to read the COMMON
file and the checkout procedure BATCH.

12. Compare the output generated by the checkout procedure
with the verify output provided.

22

THE SIMCON OPERATING ALGORITHM

l. Initialization

a. Load zero level overlay to start.

b. Load OVERLAY �,0! and transfer control to routine SHAR.

c. SHAR loads OVERLAY �,2! containing initialization routines!.

d. System and file initializations are performed and the SIMCON
symboL table is created.

e. Return control to routine SHAR which loads OVERLAY �,1! and
transfers control to MASTER.

2. Determine command entry mode. MASTER has two entry points controlled
by switch ISWA, the normal mode and the intervention m de. The normal
mode is selected at initialization and begins at step 3. The intervention
mode begins at step 4.

3. Enter normal command cede.

a. Request from the command stack the next command pending. At
initialization, the stack is empty.! If the stack is not empty,
pass command fetched to the command pre-processor at step 5. If
the stack is empty, continue with the next step.

b. Request a command from the current input unit. At initialization,
the current unit is the "batch" input file rather than the unit
assigned to the terminal.

c. Pass command fetched to the command pre-processor.

d. If an end-of-file is encountered on the "batch" file, set current
input to the unit assigned to the terminal and repeat at 3b, U
an end-of-file is encountered on the unit normally assigned to a
terminal, process according to job origin stop if batch origin,
repeat at 3b if time share origin!. If the local system does not
generate EE!-F's from an interactive terminaL, no change of the
source code should be necessary.

23

Intervention Command Processing. This entry mode processes commands
which have been designated by the user to intervene at some point of
model iteration "AT" commands!. Immediately bef ore this mode is
entered, the model overlay was loaded and the model was in the process
of iteration. At some point, the model monitor detects a command or
commands designated by the user to intervene. The monitor places these
commands into the stack and signals the overlay main routine DOMDL! to
return control to the master overlay and enter via the intervention
point.

a. Request from the command stack the next intervention command pending
and pass it to the command pre-processor at step 5.

b. If the stack stop-point has been encountered a device used to
separate intervention from normal commands and set by the model
monitor!, clear stop point and return control to the model.

c. Processing finished. Return control at step 2.

5. Command Pre-processor

a. Scan for a comment line one of two types! and if the command is a
comment, pass control to the command executor which echos the line
or does nothing as the case may be!.

b. Scan for command continuation on the next line indicated by a
terminating comma!. If command is continued, request next line
from current input unit and repeat at 5b.

c. Scan for multiple commands on one line. If more than one command
is contained on the line, retain the first and push the rest onto
the command stack in reverse order of their execution sequence from
right to left!. Now pass command retained to the command executor
at step 6.

6. Command Executor

a. Identify the command

b. Execute command. If the command requires that the model, graphi.cs,
or initialization overlays be loaded, set the appropriate switch
 ISWB or ISWC! and return control through routine SHAR to the
SIMCON main program which will load the overlay. When these overlays
have completed their functions, they return control to the SIMCON
main progra~ which will reload the MASTER overlay.

c. Processing finished. Return control at step 2.

APPENDICES

25

Appendix A: Alphabetical list of routines and calling parameters.

ATMGR IBUFF g LENp IT g IFNg IRET!

Subroutine.
Handles the detail of the AT command table mechanics.

A string array containing a command image in Al formats
The number of characters in IBUFF.
An iteration reference value.
A function code:

1 Store the command into the AT list.
2 Fetch all AT commands whose effective iteration

matches the reference value IT and load them into the
command stack for execution.

3 Clear the AT list.
Return condition code:

0 Operation complete.
l No commands match IT or list empty.
2 Iist is full.
3 Stack manager error.

XBUFF

LEN

IT

IFN

IRET

jxsGR ~~~~7

�,0!
 l r 2!
�rO!

ATS

INIT

RTSTUF

Lll Q~ZRXia&

�,0!
�,0!
 Or O!

NCV EW
STKMGR

PACKC

ia Qs~agMmmm ~~ ~

/ATCNDS/
/SUPCOM/
/WKSP j

 OrO!
�r0!
 Oi0!

BLKDAT
SIMCON

BLKDAT

1 h ' b f g d
the accuracy of the following lists, some errors undoubtedly have crept
in. Of course, if discrepancies do occur, defer on the side of the
actual source code.

26

ATS IBUFF r LEN!

Subroutine.
PrOCeSSeS an AT cOmmand.

Contains a command image in Al format.
The length of Ibuff.

IBUFF

LEN

Xram O~i~aZ

 lrl!MASTER

Qzmm.m BMM~ ~ ~ O'A~'

/ATCMDS/
/SVPCOM/
/WKSP/

 Or0!
�,0!
�,0!

BLKDAT

SIMCON

BLKDAT

ATTN

Subroutine.
A user callable routine designed to interrupt model iteration

conditionally. ATTN provides a means for a model programmer to trap
errors within the model. This routine is not called by any SIMCQN
subpxogram.

~i Kk2Q SM~~ ~ Qw~az

/SYSCOM/ Or0!SYSFN

ATMGR

EQCMP
FGET

SCAN

SCSET

SYSTAT

UNPACK

 Or 0!
 Or 0!
 Or 0!
 l rO!
 l rO!
 Or0!
 Or 0!

27

BLOCK DATA unnamed!

Block Data Subprogram.
Most common blocks and parameters that may need to vary from machine

to machine are defined here, Refer to the idividual common block
descriptions for more details.

w Qx!wL<Ci~mgg ~i~~L ~

CCON

Subroutine.
Optional user supplied subroutine to fix the size of the blank common

block. A default CCON fixing blank common at 1000 words is otherwise
loaded from the SINCON library. This subroutine should have no
executable statements other than a RETURN statement as CCOM is never
actually called.

CHANGE OLD@ OLI NEW g NL g OLINE g OLEN g NLINE p NLEN g IRT!

Subroutine.
A text editing routine used for parameter substitutions during macro

processing. This routine operates on packed character strings but is
system independent,

An integer array containing a symbolic parameter in packed
form.
The number of characters contained in OLD.
An integer array containing a symbolic parameter to
replace OLD in packed form! .
The number of characters contained in NEW.
An integer array containing the string to edit in packed
form.
The number of characters contained in OLINE.
An integer array returned containing the edited string in
packed form.
The number of characters returned in NLINE.

OLD

OI

NEW

NL

OLINE

OLEN

NLINE

NLEN

/ATCXDS/
/CSTACK/
/NET/
/NKRF/
/NPST/
/NBCN/
/WKSP/
/ZZZZ/

BLKDAT
BLKDAT

BLKDAT

BLZDAT

BLKDAT

BLKDAT

BLKDAT

BLKDAT

�i0!
�,0!
�,0!
�s0!
�i0!
�r0!
 Oq 0!
�ro!

28

A return condition code:
0 Editing complete.
l No oc~urance of parameter OLD found.

!RT

�,1!MACROS

�,0!
 l,l!
 I'll!
� 0!

EQCMP2
MOV EST

SCAN2
SCSET

CNDFIL IBUFF,LEN,IERR,IRET!

Subroutine.
A machine dependent routine designed to process the SIMCON READ

command. It should function by opening a new BATCH file specified by
the command. Provided here only as a dummy routine.

� pl!MASTER

CMREAD INiICON,LENGTH!

The logical input unit number of the common block
definition file.
A code for the common block to process:

1 The SIMCON utility block, SUPCOM.
2 The blank common block.

The total length of the common block in "bytes" see the
definition of "byte" in the description of common block
/NBCM/.

IN

ICQM

 lr 2!INIT

Subroutine.
Constructs the symbol table from the source definitions of user and

SIMCON's utility common blocks.

29

92ZR rr Mr

~~M hZNEIILKl Blois ~

/COMCOM/
/NBCM/
/SITCOM/

� i 2!
�r0!
� ~ 0!

CNREAD
BLKDAT

VARMV

CONFIG

Subroutine.
Sets machine parameters at execution time.

�,2!INIT

~inc.N hx

BLKDAT

aa 5MzRz lime

/KCC/ �.0!

CONROT ISTRg ILg ITYPE!

Subroutine.
A symbol table initialization utility routine. Resposible mainly for

interpreting subscripts and computing common block displacements.

Contains a variable name in Al format.
The number of characters in ISTR.
A code for the specification statement currently being
processed.

1 INTEGER
2 INTEGER*2
3 REAL

4 LOGlCAL
5 LOGICAL*l
6 CONNON

7 DINENSION

ISTR

IL

ITYFP

CONROT

EQCMP
FANDC

RDSTMT

SCAN
SCSET

� r 2!
 Oi0!
� r 0!
 li2!
 l.0!
� r 0!

~ g~vVf~ir

 l i2!CMREAD

Lll Q'iL~~RX

�i0!
� i 0!

VAR MV

VARMV

DEFCMD

Block Data Subprogram. Sets parameters and initializes data for the
SINCON command repertoire.

0!zaaum Kafka. ~

�.0!
�,0!

/CMDLST/
/CMDNUM/

DELT IKEYiIDATA,IRET!

Subroutine.
Deletes an entry from the symbol table.

A variable name.
Variable attributes returned.
Return condition code:

l Entry deleted.
2 Entry not found.

IHSH

IKEY

IDATA

IRET

EQC
FANDC

SUBDET

TASET

Cameos K'>2m Llami

/COMCOM/
/SIZCOM/

�r0!
 lr0!
� i0!
 l i 2!

2 hY

BLKDAT

BZ KDAT

~ 9m' xz

 li0!

~ Q5 ~4Z

 l.0!FINDH

CQJGIB!2D ~L~2ER

/ZCC/ �,0!HCOM

Overlay �,0! Main Program.
Cycles between the model monitor routine RTSTVF and the user's model.

�,0! via CALL OVERLAZSIMCON

'1~M

Comm!m M<Mm ~ ~ Qz!~K

/ STALK!
/SUPCOM/
/XPLT52/

 Op0!
�,0!
 OrO!

SIMCON
SIMCON

LPLT5

DEB IFROMg INTiNCrNSDr IFILi IRET!

Subroutine.
Translates variable subscripts from characters to integer values.

A subscript character string.
An integer subscript value returned.
The length of ZFROM.
Unused.
A delimiting character usually a comma! .
Return condition code:

1 Subscript value returned.

I FROM

INT

NC
NSD

IFIL

ZRET

RTSTUF

STKMGR

STPRT

STZER

SYSTAT

UMODEL

�r0!
 Oi0!
 Oi0!
� ~ 0!
�~0!
�,0!

32

2 Syntax error.

� iO!SUBDET

iQ QliLRX~YEiL I~ 'M

ENTR IKEY g IDATA g IRET!

Subroutine.
Enters a variable name and its attributes into the symbol table.

Variable name.
The variable attributes see common block /CONCON/ for a
description of variable attributes!.
Return condition cade:

l Variable entered.
2 Table overflow.

IKEY

IDATA

IRET

� r o!IHSH

 GiO!PACKC

QzzxXM

/KCC/ O,G!ECON

FGET

NAV EC

SCAN

SCSET

 Or O!
 OrO!
 l i O!
 l rO!

33

EQC CHl, Pl, CH2, P2!

Logical Function.
Tests for equa3.ity two characters in Al format.

CHl
Pl

CH2

P2

Starting position of a string.
Character position within string CHl.
Starting position of the second string.
Character position within string CH2.

~ Qsi~J~~RY

EQC2 ISTRl g XPOSl i ISTR2 g IPOS2!

Logical Function.
A character comparison routine for characters in packed strings

analogous to subroutine EQC.

First word address of a packed character string.
Position of a character counted from the left most
position of the first word as position number l. IPOSl
should not be constrained by the number of characters that
may fit into an integer for it should be able to take on
any positive number.
First word address of a packed character string.
Position of a character in ISTR2.

ISTRl

IPOSl

ISTR2

IPOS2

 l iO!
 lpO!

EQCNP2
SCAN2

CONROT

EQCNP
FANDC
FGET

IGNORE

LPLT51
LSIZEB

MASTER

RDSTNT

WHICHC

� r 1!
 OrO!
� r 0!
 Or 0!
� i0!
�,0!
�,0!
 lrl!
 l i 2!
 l.l!

EQCÃP Sl g Pl g S2 g P2 g LEN!

Logical Function.
Tests two strings in Al format for equality.

Starting address of a packed string.
Character position within the string Sl.
Starting postion of a second string.
Character postion within string S2.
The number of characters to compare.

 lil!
 l,2!
 l.0!
 l pl!

ATS

CNREAD

FANDST

MASTER

P~ '1 ~t

� 0!EQC

EQCMP2 ISTRliIPOSl,ISTR2qIPOS2~LEN!

Logical Function.
Tests for equality two packed character strings.

First word address of a packed character string.
Position of the first character of the substring to test
counted from the left most position of the first word as
position number l. IPOS should not be constrained by the
number of characters that may fit into an integer for it
should be able to take on any positive number.
First word address of a packed character string.
Position of the first character of the substring to test.
The number of characters to compare.

ISTRI

IPOSl

ISTR2
IPOS2
LEN

~ 9~i»~g

Sl
Pl

S2
P2

LEN

CHANGE

FINDH

GETNAC

NACROS

NAMCMD

PVTNAC

WHICHC

 l ~l!
 l i0!
 lrl!
 lrl!
� rl!
 l il!
 lil!

35

QV3~~ra Y

�.0!EQC2

F ANDC I ARRAY ~ L EN ~ I CHAR ~ NUN ~ I S T ~ I F I N ~ I C F p I R E T !

Subroutine.
Finds in a string IARRAY an occurance of any character in the string

ICHAR.

A character string in Al format.
The number of characters in IARRAY.
A character string in Al format.
The number of characters in ICHAR.
The character position in IARRAY to begin the search.
Position of the first matching character in IARRAY
returned.
The position of the matching character in ICHAR returned.
Return condition code:

1 A matching character was found.
2 No match found.
3 A parameter error, IST,NUN = 0 or IST ! len.

X ARRAY
LEN

I CHAR
NUN
IST

IFIN

ICF

IRET

�i0!EQC

CNREAD
CONROT

NACROS

NANVAR

SCAN
STGT

STRFND
VGTS

WHICHC

�,2!
� i2!
�.1!
 lrl!
� r 0!
 l.l!
� rl!
�.1!
�,1!

36

FANDST IARRAY g LENT ISTR BENUMB p IS p IF g IRET!

Subroutine.
Finds the position of a substring in a string.

A character string in Al format.
The number of characters in IARRAY.
The character substring in Al format.
The number of characters in ZSTR.
The position of the character in IARRAY to begin the
search.
The position of the first character where ISTR is found in
IARRAY.

Return condition code:
1 ISTR found at position ZS.
2 ZSTR not found.
3 Parameter error, IS, NUMB= 0 or IS =LEN.

IARRAY
LEH

IS TR

NUMB

IS

!F

!RET

r~~ig

+r~gg

�,0!EQCMP

FGET Z CARD ~ I 1 g I 2 g X g I ERR!

Subroutine.
Converts a character string representing a numeric value into the

internal floating point representation. Zt is also called from routines
requesting an integer value where the floating point number is converted
to integer. General floating point syntax is accepted including E
specifications.

A character string in Al format.
First character position of the substring to convert.
Last character position of the substring to convert.
The value converted returned,

ICARD

Il

I2
X

LOOPER

NAMVAR

S IMLT

STATS

STRFND

SUBDET

VALFND

VGTS

V IEWX

� i 1!
� pl!
� il!
�il!
� il!
�,0!
� r 0!
 lrl!
�,1!

37

Return condition code:
0 value successfully converted.
1 syntax error or characters are non-numeric.

IERR

�i0!EQC

FILE IBUFF,LENgCONOHl!

A command image in Al format.
The length of IBUFF.
Unused.

IBUFF
LEN

COMONl

j~i~~r

�il!

E'L 1~I

VIEWX � r 1!

Enemy hg

S1NCON

GMlKQJl ZM~~ ~

/SVr CON/ � i 0!

ATS

DZB

SIMLT

TINEF

V ALFND

VGTS

Subroutine.
Proccesses the FILE command.

 lrl!
�,0!
 lil!
 l rl!
�r 0!
� r 1!

38

F INDH IKEY g IDATA g I ENT g IRET!

An array containing the variable name in Al format.
Variable attributes returned see common block /COMCOK/
for details! .
The entry number returned.
Return condition code:

1 Entry found.
2 Entry not found.

IKEY
IDATA

IENT
IRET

 liO!
 l i0!

DELT
IHSH

�,0!
 OrO!

EQCMP2
PACKC

Qkf~

BLKDAT

BLKDAT

Gmmmm Rla.dm QaaC

 Oi0!
 OiO!

/KCC/
/WKSP/

GBYTE IBUFFiPOS,CHAR!

Subroutine.
Gets a character from a packed string.

An integer array containing a character string in packed
form.
The character position counting from the left most
position of the first word of IBUFF as position number I.
One character in Al format returned.

I BUFF

POS

 l il!
�qO!

MOVEST
UNPACK

Subroutine.
Looks up a variable name in the symbol table and returns the entry

number and variable attributes.

39

GETMAC NAME~LN,IBUFFiLENgZRET!

Subroutine.
Retrieves a macro from the macro library.

The name of a macro in Al format.
The length of NAME.
An integer array returned containing the macro text.
The length of the integer array IBUFF.
Return condition code:

0 macro found and returned in IBUFF.
1 macro not found or library empty.

� r 1!MACROS

r~~y

EQCMP2
MACIO

MAV EC

PACKC

S ETC

LQ QXRXMY!~mao ~i~ ilail

� i0!
�r0!

/MET/
/WKS P/

GETVAR IBUFF g LEN!

Subroutine.
Proccesses the GET command.

A command image in Al format.
The length of IBUFF.

IBUFF
LEN

� r 1!MASTER

Qzi'~~~Y.E&' 51~M

VIEWX Iran!

NAME

LN

IBUFF

LEN

IRET

 lr0!
� ~0!
�r0!
�,0!
�r0!

Refired. hx

BLKDAT
BLKDAT

40

~ GAMY,QKGtaQLL 21QsJ!4% ~

�r 0!/SUPCOM/ SIMCON

GRAPH IBUFF r LENr COMONl!

IBUFF A command image in Al format.
LEN The length of IBUFF.
COMONl Unused.

 l rl!MASTER

in Qz~LazI "~ 1 ME

 l, l!VIEWX

~ 9Y!~WggggK!~ ~,!~ci ~

/SVPCOM/ �r0!

HCOK

Block Data Subprogram.
An optional user supplied subprogram to fix the sixe of the symbol

table. By default, the symbol table is fixed to 2200 words.

~r!!.~Y~man Bl.a.~ ~

/ace/ �ro!HCOM

Subroutine.
Processes the GRAPH command.

~~ hg

SIMCON

HDUMP I PAR!

Subroutine.
Outputs an image of the current symbol table listing variable names,

their attributes, common block residence, and displacements.

I PAR

 l rl!MASTER

�,0!
�i0!

SYSTAT
UNPACK

!~m>W MQ.'~

/KCC/ �,0!BLKDAT

IGNORE BUFF ~ LENg CHARS g LCHAR p ZNPTR p LAST g IRET!

Subroutine.
The compliment to FANDC, IGNORE finds the first occurrence of a

character in string BUFF not in the list CHARS.

IRET

~ 0!zrrXuz

 l.0!VALFND

BUFF

LEN

CHARS

LCHAR
INPTR

LAST

Output type code:
0 Output table for common block /SUPCOM/ and blank

common.

1 Blank common only.
2 /SUPCOM/ only.

A character string in Al format.
The number of characters in BUFF.
The list of characters to ignore in Al format.
The number of characters in CHARS.
The character position within BUFF to begin the search.
The position within BUFF of the first character not in the
CHARS list.
Return condition code:

1 Non-matching character was found.
2 All characters are in the CHARS list.
3 Parameter error, INPTR ! LEN.

42

MY.

 Or O!EQC

IHSH IF, IKEY' IDATA, lRET!

Function code:
l Enter new entry.
2 Lookup existing entry.
3 Lookup entry and if not found, enter given entry.
4 Delete old entry.
5 Replace existing entry with given entry.

Entry name in A1 format.
Entry attributes see common block /CONCON/ for
description! .
Return condition code:

1 Operation complete.
2 entry not found or table overflow.

IF

IKEY

IDATA

IRET

� rl!
�.1!
� r 2!

NANVAR
STGT

TASET

2~"

 lrO!
�,0!
 lrO!

DEI T
ENTR

FINDH

IHZT

Overlay �,2! Main Program.
Nain program for the initialization routines which construct the

symbol table, initialize common blocks, and perform user defined
initializations.

r~~>g

�,0! via CALL OVERLAY

Subroutine.
Translates a symbol table manipulation into calls to one or more

basic symbol table routines.

43

g'~r

Quern ~Am Usasi

INITCM

� r 2!
 lrl!

INIT
MASTER

GLQLl K kQRz LISLE

 Or0!
 Or0!

CCOM
BLKDAT

//
/KCC/

INITER

Subroutine.
Initializes the SIMCON utility block.

� r2!IN IT

gM: :1~t

ATMGR
CMREAD

CONFIG
INITCM
INITER
STKMGR

SYINIT

SYSFN

UINXT

/KCC/
/NBCM/
/GV TALK/
/SIZCOM/
/SUPCOM/

Subroutine.
Zeros the blank common block.

 Or0!
� r 2!
�,2!
� r2!
� r 2!
 Or 0!
� rO!
 Or0!
�,2!

BLKDAT

BLKDAT

SIMCON

VARMV

SIMCON

 Or0!
�r0!
 Or0!
 Or 0!
 Or0!

ia!A hx

/SVPCOM/ �,0!SIMCON

LOOPER INBVFF LEN,IC!

Subroutine.
Processes the SET, DISPLAY PLOT, and UNPLOT commands.

A command image in Al format.
The length of INBUFF
The command number of the function to perform. See the
comments in routine MASTER for a table of command
numbers.!

INBVFF
LZN

IC

~ Qz~M<

�,1!MASTER

in Qv~az

Ganja SMi~ ~ Qw~ax

/HELP/
/SUPCOM/
/SIZCOM/

� 0!
� �!
��!

STATS

SIMCON

VARMV

FANDST

MAVEC

RPUTS2
RTAKE2
STGT

STRFND

SYSTAT

VALFND

VARMV

VGTS

V PRNT

�.0!
��!
� �!
 l l!
 l l!
�,1!
��!
��!
�,0!
 l l!
��!

45

LPLT5 Yg YHAX p ITIKEg IYBgNPARgNLLINg LOGUg ZWGRAg IFH!

A function code:
l>2,3 Save values then pass all parameters directly

to subroutine LPLT51 for printed output. See LPLT51
for descriptions of the parameters.!

3<4 Save values then set flags for subsequent calling
of the graphics routines.

6 Save values only the GET function!.

IFN

~ QXJ~~Rg

�io!
� il!

RTSTUF

V IZWX

in Q~i~xxEE 1~M

LPLT51

SYSTAT

 Oio!
� ~ 0!

r~Ly.~HUNG K~~M ~

/SUPCOm/
/XPLT52/

 Oro!
 Oro!

SINCON
SINCON

LPLT51 Yp YNAXg ITIME J IYBJNPARg NLLINJ LOGUg IWGRAJ IFN!

Subroutine.
The 'dispose" routine for formatted output and printer plots.

An array containing a line of Y values to be printed or
plotted.
An array containing scaling maximums for the values in Y.
The current iteration in model "years".
A reference value: if ITINE = IYB, produce the coordinate
axes or table headers as appropriate.
The number of values in array Y.
The number of printer columns to use on the page.
The logical unit number to receive output.
A function code:

1 The output values represent variables currently in
the plotting queue.

YNAX

ITINK

IYB

NPAR

NLLIN

LOG U

IWGRA

Subroutine.
Switches between graphic and printed output routines for simulation

variables.

46

2 The output values represent variables named on the
command.

A function code:
1 VIEW command output printer plot!
2 PRINT command output printed table!
3 Reserved for graphics.
4 Reserved for graphics.
5 FILE command output printed table written to a file

without the header!.

IFN

 Or O!LPLT5

331 Q'~MlsI!i~ 1~i

hg

S IMCON

~CiJDGK~G QJi~& ~

/SUPCOM/ OrO!

LPLT52 Y YMAX ITIME IYBpNPARpIDlpID2gIWGRA!!FN!

Subroutine.
Produces a graphic display. For parameter descriptions, refer to

subroutine LPLT51.

IDl,ID2 Unused.

�rO!PLT52

i' C 1ME
Numerous COMPLOT subroutines.

~ Q~~Y.Defi~ hz

SINCON

GQIQNQD K.QNM ~

/SUPCOM/ OrO!

EQC
LSIZEB

MAV EC

NAMWRT

SETC

�,0!
 OrO!
 Or O!
 OrO!
 O iO!

47

/XPLT52/ Or 0!SINCON

LSIZEB IBVFFgLEN!

Functions
Returns the position of the last non-blank character in a string.

Contains a string in Al format.
The length of IBUFF.

IBUFF
LEN

�i0!
 lr0!

LPLT51
REED

�i0!EQC

NACIO IFN,IBUFFiLEN,IRECiIRET!

A function code:
1 Read a record.
2 Write a record.
3 Open a new or existing library file.
4 Close the library file.

An integer array through which the macro text is passed
formatted in macro packed form. See common block /ZZZZ/
for a description.!
The length of lBUFF.
Return condition code:

0 Operation complete.
1 I/O error,

IFN

IBUFF

LEN

IRET

K ~r~~r

� r 1!
� il!
�,0!

GETMAC

PUTNAC

SYSFN

Subroutine.
Nachine dependent routine which performs I/O functions on the macro

library file.

48

Mmaum 21a<m ~

 Or 0!
 OrO!

/NET/
/U INDEX/

BLKDAT

UCONIO

NACROS IARRAY,LENpIFNpIRET!

Subroutine.

Processes macro definition and execution commands.

A character array containing a command image in Al format.
The length of IARRAY.
A function code:

1 Process a macro call.
2 Write a newly created macro to the library,
3 IARRAY contains a command to be used as part of the

macro currently being constructed.
4 Process the macro definition command.
5 Command stack contains a macro; write to library,

Return condition code:
0 Operation complete.
1 Macro unknown.

2 Macro processing error.

IARRAY

LEN

IFN

IRET

 lrl!

CHANGE

EQCNP2
FANDC

GETMAC

NAV EC

NOV EW

PACKC

PUTMAC

SCAN

SCSET

SETC
STKMGR

STRFND

UNPACK

� il!
 Oi0!
 O.O!
�rl!
� i0!
 OrO!
 Or 0!
�.0!
 ir 0!
�,0!
�,0!
 OiO!
� r 1!
�,0!

49

r~~r~man Bla.~ ~

/MKRF/
/MPST/
/NBCM/
/NKS P/
/zzzz/

�,0!
 OrO!
 Or 0!
�.0!
� r0!

BLKDAT
BLKDAT

BLKDAT

BLKDAT

BLKDAT

MASTER

Overlay l,l! Main Program.
This is the SIMCON master controller. The interactive command mode,

macro execution, intervention commands AT commands!, model interation
and overlay loading are ultimately controlled through this routine.
Other overlay main programs including the SIMCON main program serve
generally as overlay switching extensions of the MASTER program.

�,0! via CALL OVERLAY

CK 'l~t ~r~~r

ATS

CMDFIL

EQC
EQCMP
FILE

GETVAR

GRAPH

HDUMP

INITCM

LOOPER
MACROS

NAMCMD
NAMVAR

PRINT
REED

SCAN
SCSET

SETC

SIMLT

STATS
STKMGR

SYSCMD
SYSFN

SYSTAT

TIMEF

� rl!
 l,l!
�,0!
 Or 0!
� r1!
� r 1!
� 1!
�,1!
�,0!
�r1!
� rl!
�,1!
 lrl!
� 1!
�.0!
� r 0!
 lrO!
 Or 0!
�rl!
� r 1!
 Or 0!
�,1!
 Or 0!
 OrO!
 lrl!

50

DaMmd hx Q'2!~~XX

/ZCC/
/a@TALZ/
/SVPCON/
/WKSP/
/XPLT52/

�I0!
�r 0!
 Or0!
�.0!
�i0!

HCOM

SIMCON

SIMCON
BLKDAT

SINCON

Subroutine.
Moves an Al formatted string into another string.

The number of characters to move.
The starting element of a character string in Al format.
The position of the first character to move from FSTR.
The starting element of a character string to move to.
The first character position to move to.

N FSTR
FPOS

TSTR

TPOS

Xaam Q>sr~~

UCND2
UCMD3

UCMD4
UCMD5

UCND6

UCND7

UCONAN

UINIT

VALFND

VIEW

WH I CHC

NAVEC N,FSTRpFPOSgTSTRgTPOS!

DZB

GETNAC

LOOPER

LPLT51

MACROS

NANVAR

PUTNAC

RDSTNT

RPUTS2

RTAKE2
SCSET

STATS

STGT

STRFND
SUBDET

�.1!
�il!
 l,l!
� rl!
� r 1!
� rl!
�,1!
�rl!
� r 0!
 l~l!
�r 1!

 lr0!
 l,l!
 l,l!
�,0!
�,1!
�I1!
� r 1!
�,2!
� il!
�,1!
�,0!
 l,l!
 lil!
� r 1!
�i0!

�,0!
 lr1!

VARNV
V IEWX

NOV EST N g ARRAYl g I CHAR1 g ARRAY 2 ~ I CHAR 2!

Subroutine,
A routine analogous to subroutine NAVEC. Noves a packed string or

substring into another packed string.

The number of characters to move.
First word address of an integer array containing a packed
character string.
Position of the first character of the substring to be
moved counting from the left mast position of the first
word as position number one. ICHARl and ICHAR2 should not
be bounded by the number of characters that may fit into
an integer, they should be able to take on any positive
integer.
First word address of an integer array to receive the
substring.
Position to place the first character of the substring
within ARRAY2.

N
ARRAYl

ICHAR1

ARRAY2

ICHAR2

� el!CHANGE

+r~LgZ~ 1~M

GBYTE

PBYTK

� 0!
 Or0!

NOVEW NCHAR, ARRAY1, ARRAY2,OLEN!

NCHAR

ARRAYl
ARRAY2

OLEN

The number of characters to move.
An integer array containing a packed character string.
The first word address of an integer array to move to.
The number of full integer words moved returned.

Subroutine.
Noves full integer words containing packed character strings from one

integer array to another given the number of characters to be moved. In
situations where substrings begin on word boundaries, this routine is
considerably faster than subroutine NOVEST. This routine is system
independent.

52

fromm !2xr~aY

 l il!
 l I l!

MACROS
PUTMAC

QKRX~Y

�.0!

NAMCMD IBUFF g LEN!

Subroutine.
Changes the naze of an existing SIMCON command.

A character string containing a command image in Al
format.
The length of ZBUFF.

I;BUFF

� rl!MASTER

Z~zHIR$U1 812~ ~

/NBCM/

EQCMP2
PACKC

SCAN

SCSET
SETC

/CMDLST/
/CMDNUM/
/WKSP/

D~~ hx

BLKDAT

�,0!
�i0!
 l r 0!
 l r0!
�,0!

BLKDAT

BLKDAT

BLKDAT

�r0!
�,0!
�,0!

53

NAMVAR IBUFF i LEN!

A command image in Al format.
The length of IBUFF.

IBUFF

LEN

� rl!MASTER

NAMWRT NPAR,IWGRA,LOGU!

Subroutine.
Outputs variable names and maximums for printer plots.

The number of variables.
A function code:

1 The variables to be output are currently in the plot
queue.

2 The variables vere named explicitly on the command,
The logical unit number to receive the output.

N PAR

IWGRA

LOGU

~ Qz.~MLS

LPLT51 �i0!

XI1 QYPM14YCozmaa BI.~:~Mw ~

/SVPCOM/

2!~zeN hZ

S IMCON Oi0!

Subroutine.
Processes the NAME command.

FANDC
FANDST

IHSH

MAVEC

SCAN

SCSET
SETC

SUBDET

 lr 0!
� r 0!
 lr0!
�,0!
�,0!
�,0!
�r0!
� q0!

54

PACKC LEN p CHARS g INTS p OLEN!

Subroutine.

A system dependent character packing routine used to conserve space
when storing characters. Characters are packed into integer arrays such
that each word holds as many characters as is practical.

The number of characters to pack,
A character string array in Al format.
An integer array to receive the characters in packed form.
The length in words of array INTS returned.

LEN
CHARS
INTS
OLIN

XcQR Z~zp~Y,

PBYTB �,0!

PBYTE BUFF g POS p CHAR!

Subroutine.

A system dependent routine which packs a single character.

An integer array into which the character will be placed.
The position at which the character vill be placed in BUFF
counting as position number one the left most portion of
the word. POS may be any positive integer; the proper
index into array BUFF is computed.
A single character in Al format.

BUFF
POS

MOV EST

PACKC
 L r l!
�,0!

ATMGR
ENTR

FINDH

GETMAC
MACROS

NAMCMD

PUTMAC
STATS
STKMGR

WHICHC

�,0!
 l i0!
 L 0!
 Lrl!
 I r l!
 l~l!
 lil!
 l,l!
 o r0!
 l,l!

PI,T52

Overlay �,0! Main Program.
Switches between plotting overlay and the command mode overlay.

Q.'~~sp

 0, 0! vi a CALL CVERLAYS IMCON

~ Qmz3 az

�,0! via CALL VIERLAY

~ Ql~~RZMmmmmZ~m ~

�,0!
�i0!

/SVPCOM/
/XPLT52/

PRIHT INBUFF p LENT COMONl !

Subroutine.
Processes the PRINT command.

IHBUFF A character array containing a command image in Al format.
LEN The length of INBUFF.
CGMONl Unused

i'm ~W~~v

�rl!MASTER

�il!

CQK9Kl KLQ~Mi. ILk25i

�i0!/SUPCOM/

EV L~t

I PLT52

Died hx

SIMCON

LPLT5

L'}M~~M hz

SZMCOH

56

PUTMAC NAME g LKI IBUFF g LEN~ IRET!

Subroutine.
Enters a macro into the macro library.

A macro name in Al format.
The number of characters in NAME.
An integer array containing the macro text in macro packed
form. See common block /ZZZZ/ for a description of macro
packed form.!
The length of IBUFF in integer words.
Return condition code:

0 Operation complete.
1 Macro library is full.

NAME
LN

lBUFF

LEK

IRET

�,1!MACRQS

LJ1 Q!~XX

an Gx~~azL}af.inc<i hZGiven.m KL.'Mm ~

/MET/
/WKSP/

�iG!
 Gr0!

BLKDAT

BLKDAT

RDSTNT IBUFFgLASTgLENpXSTOPpIN!

Subroutine.
Reads a single FORTRAN declaration statement image for symbol table

construction. It reads continuation cards up to a total statement
length of 660 characters,

A FORTRAN statement image returned.
The position of the last non-blank character in IBUFF
returned. The caller must initialize LAST to 0 before
each call.
The length of the last statement read still in the buffer
pending processing, The caller must initialize LEN to 0

IBUFF

LAST

EQCMP2
MACIO

MAVEC
MOV EW

PACKC

SETC

�,0!
 GrG!
� i0!
� pl!
�,0!
�,0>

I STOP

~o Q~t|~r

� i2!CMREAD

�i0!
�.0!
�,0!

EQC
NAVE C

REED

REED IBUFP, LENp IDl ~ ID2, LUNT, IRET!

Subroutine.
Reads a card image from the specified file and checks for an

end-of-file condition.

IBUFF

~ QmMaz

 lrl!
 l i 2!

HAS TER

RDSTNT

aw 1~f

�r0!LS I 2 EB

LEN

1Dl
ID2
LUNT

IRET

before the first statement on the file is processed and
never alter it therafter.
Set to one when the end-of-file is reached. The caller
must initialize ISTOP to 0 before the first call and never
alter it thereafter.
The logical unit number of the input file.

A character array containing an image of the line read in
Al format,
The position of the last non-blank character in IBUFF.
Unused.
Unused.
The logical unit number of the file.
Return condition code:

l One line read successfully.
2 The end of the file encountered.

58

RPUTS 2 L 1ST ~ LEN g IVAL ~ 0TH ER ~ 0 TV ~ ANAME !

Equivalenced to the integer array IPLOTQ in common block
/SUPCOM/, LIST contains the common block displacements of
the variables currently in the plot queue.
Equivalenced to NPLOT in common /SUPCOM/, contains the
number of variables currently in the queue.
Contains the common block displacement for the new
variable to be entered.
Equivalenced to the array PLTMAX in common /SUPCOM/,
contains the variable maximums for the variables in the
queue.
Contains the scaling maximum for the variable to be
entered.
A character array containing the variable name to be
entered in Al format.

LIST

LEN

OTHER

ANAME

fxsHR QM~~~RZ

�<1!LOOPER

l~h

MAVEC ara!

Mmumn BMi~ ~

/SUPCOM/ ! io!SIMCON

RTAKE2 LIST p LEN ~ IVAL g OTHER'S IRTT!

Subroutine.
Removes a name from the plot queue. See subroutine RPUTS2 far

parameter descriptions not listed below.

IRTT Return condition code:
1 Variable found and deleted.
2 Variable not found.

Subroutine.
Adds a variable name to the plot queue. The parameters af RPUTS2

make the most sense if they are described in terms the caller's
definitions subroutine LOOPER!,

59

~ Qmx.M<

 l rl!LOOPER

in Q~i~ax

 Oi0!MAV EC

9!~~4 hz

�,0!/SUPCON/ SXMCON

RTSTUF ITINE p LENGTH g IATN!

Subroutine.
The model monitoring routine responsible for storing model states

between iterations, outputting variables in the plot queue, taking
partial sums for run statistics, and causing active AT commands to be
executed at the appropriate times.

The current simulation time in the model's "years'.
Unused.
A return condition code:

l Continue model iteration.
2 There are AT commands pending execution.

+p~~j~

�,0!DONDL

'1~M

ATMGR
LPLT5

STPSUN

UCONIO

VARNV

MÃlLQN K kclM ~

/SUPCON/
/WKS P/

� rO!
 Or 0!

ITIME

LENGTH

XATN

 Or 0!
�.0!
�~0!
� i0!
�~0!

~ hz

SIMCON

BLKDAT

60

SCAN BUFF ~ LEN p LWDS i HWDS !

Subroutine.
Scans a character string for symbolic substrings or names. A call to

SCAN should be preceeded by a call to subroutine SCSET to define
delimiter characters.

A character string in Al format.
The length of BUFF.
A doubly subscripted array returned Containing the
starting and ending positions of each symbolic string
found. For example, LWDS l,l! contains the position of
the first character of the first symbol counted from left
to right! in BUFF and LWDS�,1! contains the position of
the last character of the first symbol, etc.
The number of symbols found.

BUFF

LEN

LWDS

NWDS

l~

FANDC �,0!

ia GIW~~aXGauze'~ Ql.a!M~ ~

� i0!/SCCOM/ SCAN

ATS

CMREAD

DZB

MACROS

MASTER

NAMCMD

NAVAR

S IMLT

STGT

SUBDET

TIMEF

VGTS

� r1!
 li2!
�,0!
 lrl!
 lrl!
{lrl!
 lql!
�r 1!
� i 1!
 lr 0!
� r 1!
� il!

S CAN 2 BU F F g L EN p LWDS i NWDS !

Subroutine.
Similar to subroutine SCAN except that

packed strings. Refer to subroutine SCAN
below. SCAN2 is system independent.

SCAN2 operates directly on
for parameters not described

An integer array containing a packed character string.
The number of characters in BUFF.

BUFF
LEN

fam Qv~az

�,1!CHANGE

'1~M

EQC2 �r0!

Mamas Blo.~ ~

/SCCO~/

'~ hz

�,0!SCAN

SCSET IDiND!

Subroutine.
Initializes delimiters in preparation for a call to subroutine SCAN.

A string array of delimiter characters in Al format.
The number of delimiters.

ID
ND

Xxma Qz~km

ATS
CHANGE

CNREAD

DZB

NACROS
RASTER

NAMCND

NAVAR

S INLT

STGT

SUBDET

TINEF

VGTS

�.1!
 lr1!
� r 2!
�r0!
� r 1!
�.1!
� r 1!
 lil!
� il!
 lil!
� r 0!
� il!
� ~ 1!

62

m &~ax

�r0!NAV EC

~ QM<~~'ggggg~ @~i~~ ~

/SCCON/ � i0!

SETC NUNiBUFFiCHAR!

Subroutine,
Sets one or more elements of a character string to a common value.

It is sometimes also used to zero common blocks or arrays.

NUN The number of elements to set.
BUFF The first word address of the array to set.
CHAR A single character in Al format.

XLRGt Q'.iL~~M~

Overlay �,0! Nain Program.
Switches between the initializing overlay and the command mode

overlay.

+r

 0 < 0 ! v ia CALL OV ERLAYSIMCON

Q.~m'

�,2! via CALL CVERLAYINIT

GETNAC

INITER

LPLT51

NASTER

NANVAR
PUTNAC

SINLT

STGT

SUB DET

V IEWX

 l,l!
 lr 2!
� i 0!
 lrl!
�, 1!
� rl!
� ~1!
� il!
�i0!
� il!

63

 l,l! via CALL OVERLAYMASTER

~ 92L~~~iL

�r0!SIMCON

SIMCON

SIMCON Nain Program, Overlay �,0!
Prints the SINCON banner and otherwise only an overlay switching

routine.

Qmx.Mz2!~iA hzLls>&w LLami

�r0!
�i0!

/SVPCOM/
/CV TALK/

SIMCON

SINCON

SINLT INBUFFgLEN,ICNDglRTT!

Subroutine.
Processes the SIMULATE, CONTINUE, and GO commands, sets simluation

parameters, and returns to the caller so that the user's model may be
invoked.

 lrl!NAS TER

1~@

Date.m RL.Mw ~

/OV TALZ/

DOMDL

PLT52
SHAR

FANDST

FGET

SCAN

SCSBT

SETC

�,0! via CALL OVERLAY
�,0! via CALL OVERLAY
�,0! via CALL OVERLAY

�i 0!
� i0!
�,0!
�,0!
�r0!

64

9!~A@4 bYCauuaaa 2La<2m ~

�.o!/SUPCOM/ SIMCON

STATS INBUFFrLENrIC!

Subroutine.
Processes the STATS and ONSTAT commands.

A command image in Al format.
The length of INBUFF.
The command number of the function to perform. See the
commented table of command numbers listed in program
MASTER. !

INBUFF
LEN

XC

~ Qmr.MY

 lrl!

Gzp~RYGaamm K.~Ax ~

 Or 0!
 l,l!
�,0!
�,0!

/SVPCOM/
/HELP/
/SIZCOM/
/STTCS/

SIMCON

STATS

VAR MV

STPSUM

FANDST
MAVEC

PACZC

STGT

STPRT

STPSUM

STZER

UCOMIO

VALFND

�,0!
 OrO!
�r0!
�r1!
�,0!
 Or0!
 Or 0!
�,0!
 l r 0!

65

STGT BUFF g LH ~NAME ~ INL ~ IDATA g I TAB ~ XV g XRTT!

A command image in Al format.
The length of BUFF
A variable name returned.
The length of NAME.
Variable attributes see common block /COMCOM/ for a
description of variable attributes!.
Subscripts of variable NAME.
Set to zero on the first call by the caller, is
incremented by one for each variable processed on the
command line.
Return condition code:

1 Normal return.

2 End of the line encountered.
2 Syntax error.

BUFF

LN

NAME

INL

IDATA

IRTT

 lil!
� il!
� el!

LOOPER

STATS

V IEWX

�,0!
�i0!
�,0!
�.0!
�,0!
�i0!
�r 0!

FANDC
XHSH

MAV EC

SCAN

SCSET

SETC

SUBDET

un 2~~2m ~

/STGTCM/ �.1!

Subroutine,
Extracts a name and its subscripts from a command line.

66

STKMGR ICMDg IARRAYg LENg IFNp IRET!

Subroutine.
Handles the details of command stack manipulation.

ICMD
IARRAY

LEN

1FN

 Or 0!
�r0!
 l,2!
 l.l!
 lrl!

ATMGR

DOMDL

INIT

MACROS
MASTER

C '1Mf

PACKC

UNPACK
� qO!
 Or 0!

m Qz~ay~~~ /~i~ ~

/CSTACK/
/WKS P/

 Oi0!
�iO!

BI KDAT
BI KDAT

A command image in Al format.
An integer array used to pass portions of the stack in
packed form. See common block /CSTACK/ for details.!
The number of characters in string ICND or the length of
IARRAY in integers, whichever is appropriate.
A function code:

l Pop the stack, i.e. release the first command from
the stack and return it to the caller in ICMD.

2 Push the stack, i.e. place the command contained in
ICMD onto the stack.

3 Clear the stack.
4 Set the stack stop point at the current stack

pointer. This device makes the stack appear empty
under certain conditions when it is not actually
empty to cause commands to be preferentially read
from a command file or pending AT commands to be
executed.

5 Clear the stop point.
6 Enquire if the stack is currently empty. IRET = 0 is

returned if it is not empty and IRET = l otherwise.
7 Load the stack directly from IARRAY. IARRAY contains

a macro ready to execute or one or more AT commands
already in packed form.

8 Empty the stack directly into IARRAY ~

67

STPRT

Subroutine.
Prints statistics of simulation variables.

Xaam N~Mv

�r O!
 lrl!

DONDL
STATS

Gammon 2La<~ ~

/SVPCOM/
/STTCS/

 Or O!
 Or O!

SINCON
STPSUN

STPSUN INT!

Subroutine.
Computes partial sums for simulation variables.

INT Simulation iteration count in the model's years.

�ro!
 l r l!

RTSTUF

STATS

Qsi~~Lymn ~Am ~

//
/STTCS/

 OrO!
 OrO!

CCON
STPSUN

STRFND BUFF,LN,STRING,LEN,STRVALrLNGrIRTT!

Extracts a key-word assignment from a command line. A key-word
assignment has the form "key-word=string".

BUFF
LN

STRING

LEN

STRVAL

LNG

A command image in Al format.
The length of BUFF.
The key-word substring for which to search in BUFF.
The length of STRING.
The character substring to which the key-word is assigned.
The length of STEAL.

68

Return condition code:
1 Normal return.
2 Key-word not found.
3 Key-word found but there was no assignment.

XRTT

{1 gl!
�,1!

LOOPER

MACROS

Qy~~Y

� r 0!
� 0!
� ~0!

FANDC

FANDST

MAVEC

STZ ER

Subroutine.
Initializes the statistical collection process for the variables in

the statistics queue.

DOMDL
STATS

�i0!
� il!

Q5L~MJ RY

/STTCS/ �i0!STPSUM

SUBDET ISTR,IL,ITAB,NAME,IRET!

A command image in Al format.
The length of ISTR.
Doubly subscripted array containing subscript ranges for
the variable NAME.
A variable name in Al format.
Return condition code:

1 Variable and subscript ranges returned.
2 Syntax error, not standard FORTRAN.

ISTR

IL

I TAB

NAME

IRET

Subroutine.
Interprets subscript ranges for variables specified on command lines.

69

XxQQl 95i~~livz

CONROT

NANVAR

STGT

r~RX

SYINIT

Subroutine.
Usually will perform sytem dependent initializations required at the

start of a SINCON run. Often, this routine will open files that are to
be used. SYINIT is provided as a dummy routine.

Q5j p~i~

�,2!INIT

QRRx1iRZiii' 1 ~ i

�r0!
� r0!

MAC IO

SYSFN

Qgggg.i~ gi~r~ ~

/UINDEX/

m Q~zaz~v.

� i 0!UCON IO

SYSCMD I BUFF ~ LEN~ IERR g IRET!

Subroutine.
Processes system functions by command. Provided as a dummy routine.

Command image in Al format.
The length of IBUFF.
Error code defined by installation.

IBUFF

LEN

lERR

DZB

FANDST

NAV EC

SCAN

SCSET

SETC

 l,2!
 lrl!
�rl!

 li0!
 l,0!
�.0!
� r 0!
 lr0!
�r0!

70

Return condition code defined by installation.IRET

~ Q~~~az

 l,l!MASTER

SYSFN N!

N A function code defined by installation.

 l,2!
 lil!

?NEST
MASTER

 Or 0!MAC ZO

~ QM~~Y.CQJMLMl R~XQ~~ ~

/SYSCOM/
/UINDEX/

 OrO!
�,0!

SYSFN

UCOMXO

SYSTAT N!

Logical Function.
Tests system conditions for which a true-false answer is desired.

Function code:
l Check the attention interrupt flag set by subroutine

ATTN or a user interrupt from an interactive
terminal! . Return TRUE if set and FALSE if not set.

2 Test job origin. Return TRUE if job is timeshare
origin, FALSE otherwise.

N

Subroutine.
Performs system dependent functions at installation option. Many

file manipulations would normally be located here such as opening,
closing, or rewinding if appropriate. Most entries are provided as
dummy but comments in the source may serve as a guide.

71

in Qwi~m!~am.m SM~ !Imd

/SYSCON/ OiO!SYSPN

TASET ITT!

Subroutine,
Merges information about a variable into the symbol table.

A cade for the type declaration statement being processed.
See common block /CONCON/ for type declaration codes.

fram Qxex1aY

� I 2!CONRGT

�,0!IHSH

!~max Gl.Mm ~

/CONCON/
/SIZCON/
/SVPCON/

� i 2!
 Or O!
 OrO!

CNREAD
VARMV

SIMCON

ATS
DOMDL

HDVMP

LPLT5

LPLT52
MASTER

V IEWX

� il!
�~O>
�r1!
 OrO!
�,O>
 lrl!
�.1!

72

TIMEF IBUFFpLEN!

Subroutine.
Processes the TIME command.

A command image in Al format.
The length of IBVFF.

IBVFF
LEN

XxQQL Q!iL4~LiQ~

 l.l!MASTER

JJl Q2ZP~gf.

Cmrmn ~aM ~

 Oio!/SVPCOM/

UCOMAN IBUFFgLEN!

Subroutine.
Optional user provided routine to perform user defined functions by

command. By default, a dummy is loaded from the SIMCON library. Also
provided but not listed in this guide are six identical routines: UCMD2,
UCMD3~ UCMD4g UCNDSi VCMD6~ and UCMD7 ~

A command image in Al format.
The length of IBUFF.

IBUFF

LEN

 l rl!MASTER

FQET

SCAN

SCSET

UCOMIO

 Oro!
 l,o!
 l io!
 Oio!

f hg

SIMCON

73

UCOMIO IFNiLEN,IREC,IRET!

Subroutine.
Processes all I/O functions on the common block dump file.

A function code:
l Read one record.
2 Write one record,
3 Read a SAVE record a record stored for a special

purpose apart from other records and usually
tempor ary! .

4 Write a SAVE record.
Record 3.ength.
Record number.
Return condition code:

1 Operation complete.
2 I/O error.

IPN

LEN

IREC

IRET

fram M~az

�ro!
 l,l!
 l,l!
 l rl!
�,1!

RTS TUF
STATS

TIMEP

V IEWX

VWGET

JJl O'KI~Y,Cu~z~a BM~~ ~

/UINDEX/
//

 OiO!
 o,o!

SYSFN

CCOM

UINIT

�i2!INIT

Subroutine.
Optional user supplied routine to perform user defined model

initialization tasks. A dummy default is otherwise loaded from the
SIMCON library.

74

UMODEL IYEAR!

Subroutine.
The main routine for the user's model.

ITINE The value of the iteration counter defined by SIMCON
commands.

�,0!

im ZM~N~ ~

�.0!CCON

UNPACK LENrINTSsCHARSsOLEN!

Subroutine.
The logical compliment to subroutine PACKC, See PACKC for parameter

defintions.

~ Qsz!~ax

ATS

HDUNP

NACROS

STKMGR

JJl ML~~Z

�.0!

VALFND BUFF, LN, STRING, LEN,VALUE, IRTT!

Subroutine.
Extracts a key-word assignment to a real number in a command line. A

key-word assignment has the form "key=number" such as "XVAL=10".

A command image in Al format.
The length of BUFF.
A key-word in Al format.
The length of STRING,

BUFF

LN
STRING

LEN

'1W 1

GBYTE

�.1!
 l,l!
�rl!
�, 1!

75

Value returned as a floating point number.
Return condition code:

1 Key-word assignment extracted.
2 Key-word not found.
3 Syntax error.

VAZ UE
IRTT

VARGET K,V!

Subroutine.
Picks up the value of a variable from blank common.

The common block displacement of the value. j:f K is
flagged negative, the value is to be extracted as integer
and converted to floating point.
The value returned in floating point form.

� il!VWGET

 Oro!

LOOPER
MASTER

STATS

V IEWX

FANDC

FANDST
FGET

IGNORE

 lrl!
� r 1!
 lrl!
� r 1!

 o,o!
� i o!
 l. 0!
� r0!

76

VARMV IPNp ITYP~ lCOMON p IDISP gVALUE!

A function code:
1 Get a value from common.
2 Put a value into common.

Variable type:
1 Integer
2 integer * 2
3 Real

4 Logical
5 Logical * l

Common block code:
l SUPCOM
2 Blank

Common block displacement in "bytes". See common block
/NBCM/ for a definition of "byte".
Value returned. VALUE is "typeless" as it is not
converted in any way.

ITYP

ICOMAN

IDISP

VALUE

LOOPER
RTSTUP

VARGET

 l,l!
�i0!
 lrl!

'1

MAV EC �,0!

Gemma' Mu~dm LIaad ~ Qv'~EX

//
/SIZCOM/
/SVPCOM/

�i0!
� i0!

/OO0

CCOM
VARMV

S IMCON

Subroutine.
Extracts and places values in the blank common block and common

/SUPCOM/.

77

VGTS BUFF p LNp ITYPE OVAL g IENTp IRTT!

Subroutine.
Kvaluates the right hand side of a SET command.

A command image in Al format.
The length of BUFF.
Variable type code:

l Integer
2 Integer ~ 2
3 Real

4 Logical
5 Logical * 1

The value returned. VAL is returned in a form according
to the variable type.
Set to zero by the caller on the first, call and
incrimented by one for each value processed.
Return condition code:

1 Value returned.
2 Syntax error.

BUFF
LN

ITYPE

IENT

IRTT

 l,l!LOOPER

�.0!
 l. 0!
� ro!
� iO!
 lr 0!

FANDC
FANDST

FGKT

SCAN

SCSZT

QmrlazDefi~ hx!mome@ ~i'm ~

/VGTS CN/ �r 1!VGTS

VIEW IBUFFiLZNiCONONl!

Subroutine,

Processes the VIEW command,

IBUFF A command image in Al format.
LEN The length of IBUFF.
CONON1 Unused.

78

i~~~r

 l r l!MASTER

1 IUU

 lil!V IEWX

~ Qv~lxE.MUI3JQ!Gal M~MM ~

!SUPCO~/ �ro!SINCON

VIEWX INBUFF,LEN,IFN!

Subroutine.
Analyzes in detail the VIEW, PRINT, GRAPH, GET, and FILE commands and

causes output.

A command image in Al format.
The length of INBUFF.
A function code:

l printer plot output VIEW command! .
2 PRINT command output.
3 Graphic output time series!.
4 Graphic output variable versus variable!.
S FILE command output.
6 Get and store variable s! internally GET command!.

INBUFF

LEN

IFN

Qy~kg

in Qzaz5.az

FILE
GETVAR

GRAPH
PRINT

V IEW

EQC
FANDC

FANDST

LPLT5
NAV EC

PACKC

S ETC

STGT

 lr>!
 lr l!
 l,l!
 lil!
 lrl!

 OIO!
 Oro!
 lro!
�io!
�.0!
 Oro!
 oro!
 l.l!

 Oio!
 oio!
�.0!
�.1!

SYSTAT
UCOMIO

VALFND
VWGET

~ ERMA ~

Subroutine.
Prints a variable name and its value for a DISPLAY command.

IDATA Variable attributes from the symbol table. See common
block /CONCON/ for details.

NAME A variable name in Al format.
VALUE The variable value. The variable type of VALUE is

indicated from the attribute type code.
IlgI2gI3jI4 the variable element subscripts provided by the

caller if appropriate.

 lrl!LOOPER

VWGET P,NV,IGETV,LENGTL,IY,IYMAX,IRET!

Subroutine.
Extracts variable elements from the blank common of a specified

iteration.

A real array ta return variable values.
Number of elements to get.
Array containing the common block displacements for each
variable element.
The length af the blank common in "bytes". See common
block /NBCN/ for the definition of "byte".
Common black record number derived from the current
iteration parameters.
The latest record to process.

P

NV
IGETV

LENGTI,

IY

/HELP/
/FMTOUT/
/SZZCON/
/SUPCOM/
/WKS P/

VPRNT IDATAt NAME rVALUE r Il g I2 t I3 I I4!

V IEWX
V IEWX

VARNV

SIMCON
BLKDAT

�.1!
 Lrl!
�.0!
 aro!
 Oio!

80

Return condition code:
l Normal return.
2 I/O processing error.

fram Q.m~~az

 lil!V IEWX

�,0!
 Or0!

WHICHC IBUFF, LEN, ICND!

Subroutine.
Identifies a command and returns its command number.

A command image in Al format.
The length of IBUFF.
The command number returned.

 lil!MASTER

~ QY3~E

Mauve BM~r~ ~

IBUFF

LEN

ICMD

R~ 1 ~t

UCOMZO
V ARGET

EQC
ZQCNP2
FANDC

PACKC

/CNDLST/
/CMDNUN/
/WKSP/

 Or 0!
 Oi0!
 Or0!
�,0!

BLKDAT

BLKDAT

BLKDAT

 Or 0!
 Or 0!
�,0!

Appendix B: Alphabetical list of common blocks and parameters.

/ATCNDS/ The AT list and associated parameters.
Defined by BLOCK DATA subprogram in overlay �,0! .

 Parameter! The length in full integers for which the
array IATLST below! is dimensioned.

ZATN

The number of active AT commands.

A pointer to the last element in the list.

IATN

IATL

IATNDX�0! An integer array containing the index to AT command
entries in the list. Each entry is 2 elements in
length, element 1 is the effective iteration of the
relevant AT command, element 2 is the pointer to the
AT command in the list.

IATLST *! The AT command list, a full integer array
dimensioned to a length sufficient hold about 5GG
packed characters allowing for 20 AT commands of an
average length of about 25 characters! plus 20
integers more. The entries are organized in stack
f ormat see common block /CSTACK/ for a descr iption
of stack format!.

/CNDLST/ Contains the list of the SINCON command names and associated
parameters.
Defined by BLOCK DATA subprogram in overlay �,0! .

 Parameter! The maximum number of command names for
which array space is reserved. 45 is convenient.

 Parameter! The length of a single command name entry
in full integers. The length should be sufficient to
hold about 2G packed characters.

IENT

The following are detailed descriptions of most of the important common
blocks used in the SINCON program. The routines and overlays defining
each block are given as well as each block element in the order they
appear as the block is defined. Array dimensions are given by the
number in parentheses following the array name if it is fixed or a star
if its dimensions may depend on a particular machine configuration.
Individual array elements are specified by the array name followed by
the element number enclosed in brackets. Several references are made to
"bytes" and "packed" characters. Refer to the description of the common
block /NBCN/ for definitions of these terms.

82

An integer array to contain the list of command
names. Must be dimensioned to hold no less than the
current 34 command name entries but it is recomended
that more be reserved to allow command synonyms.

CMDS *!

NUMS *! Parameter array! Integer array of command numbers
 no less than 34 elements, see/CMDLST/! .

/COMCOM/ Temporarily stores a symbol table entry description for
manipulation by various SIMCON routines.
Defined by subroutine CMREAD in overlay �,2!,

An image of a single symbol table entry. Each
element is described below:

INT 9!

INT [l] Variable type:
l Integer
2 Integer * 2
3 Real
4 Logical
5 Logical * 1

Displacement from the begining of common in "bytes
starting at 0. See common block /NBCM/ for the
definition of "byte".

INT [2]

INT[3] Variable length in bytes.

INT [4!

INT [5]

Number of subscripts.

Maximum value for left most subscript. If a
subscript level does not apply, then that maximum is
1.

INT[6] Maximum value for 2nd subscript.

Maximum value for 3rd subscript.INT[7]

INT[8] Maximum value for 4th subscript.

Common block code:
1 Variable element is contained in /SUPCOM/.
2 Variable element is contained in blank common.

INT[9]

/CMDNUM/ Contains a list of command numbers in one to one correspondence
to the names in block /CMDLIST/. See the table of command
numbers in the comments in program MASTER.
Defined by BLOCK DATA subprogram in overlay �,0! .

83

/CSTACK/ Contains the command stack and associated parameters.
Defined by BLOCK DATA subprogram in overlay �,0! .

 Parameter! The length in full integers of array
ISTACK below.

XBOT

IBASE A pointer to the base of the stack.

ITOP A pointer to the first entry of the stack.

ISTOP A break-point pointer within the stack.

ISTACK{*! Full integer array containing the command stack. A
stack entry is constructed by a 'packed" character
image of a command preceeded by an integer containing
the number of characters in the command. Entries are
variable in length but always end on whole integer
boundaries. ISTACK should be dimensioned to hold at
least 60 twenty-character command strings computed as
60 times the number of integers required to hold 20
packed characters plus 60 integers more. This format
is referred elswhere in this guide as "stack format".

/HELP/ Keeps track of variable subscript ranges for processing
statistical analyses. Common block elements are defined by
EQUlVALENCE to array XTAB calculated in subroutine STGT.
Defined by subroutine STATS in overlay �,0! .

Initial value of ith subscript.

Terminal value of ith subscript.

XSi

IFi

/KCC/ The symbol table and associated parameters.
Defined by HCOM subprogram in overlay �~0!.

{Parameter! The length in full integers of array
IKDAT below.

 Parameter! The size of an entry in integers. IENTSZ
must be 9 plus the number of integers required to
hold about 20 packed characters. This parameter is
defined in subroutine CONFIG.

A pointer to the last entry of the table.NENTS

/FMTOUT/ An artifact that is used only by the subroutine {VIEWK! that
defines it.

84

IKDAT *! A full integer ar ray containing the symbol table. 1t
is generally convenient to dimension this array to
hold 200 entries of length IENTSZ.

/MET/ The macro entry index table.
Defined by BLOCK DATA subprogram in overlay �,0!.

 Parameter! The maximum number of entries that may be
contained.

MMAX

MENTSZ Parameter! The length in integers of a single entry.

MNENTS The number of entries currently held.

MACDAT "! A full integer array containing the index table.
Each entry is comprised of one integer containing the
length of a macro in full integers to pass as a
parameter to the random access file routines! and as
many integers as is neccesary to hold about 20 packed
characters for the macro name.

/MRRF/ A working area to hold the symbolic key-word table Of a macro.
Defined by BLOCK DATA subprogram in overlay �,0!.

KSIZE Parameter! The entry size of a key-word. Simply the
number of integers required to hold about 20 packed
characters.

KELIST *! The key-word table. Dimensioned to hold 10 entries.

ISIZE Parameter! The entry size of a parameter, the number
of integers required to hold about 30 packed
characters.

IPLIST *! The parameter table, Dimensioned to hold 10
entries.

/NBCM/ Defines system dependent machine configuration parameters.
Defined by BLOCK DATA subprogram in overlay �,0!.

 Parameter! Defined to be the number of "bytes" per
full integer element. The term "byte" is taken to
mean the smallest addressable unit of storage capable
of holding a single character. For a word

/MPST/ A working area to hold the macro parameter substitutions for a
particular macro call.

85

addressable machine such as the CDC CYBER, one "byte"
is equivalent to one word for this purpose.

 Parameter! The number of "bytes" per real element.NBPR

NCPI

/OVTALK/ Overlay Communications,
Defined by subroutine SIMCON in overlay O,G!,

A switch set to zero to signal execution of the first
time SIMCON initialization process, then set to 1 or
2 to control the entry point into the SIMCON command
overlay main proqram, routine MASTER, overlay l,l! .

I SWA

When set to 1, the user's model is loaded. When set
to 2, the graphic display overlay is loaded.

I SWB

Controls the entry point into the initialization
overlay main program. When not set ISWC equals 0!,
all first time initializations are performed. When
set to 1, the RESET function is performed see the
SIMCON user's manual, page 20! .

I SWC

/SCCOM/ Utility common block for subroutine SCAN.
Defined by subroutine SCSET in overlay �,0!.

IDEL�0! A string array containing a list of delimiting
characters in Al format.

The number of delimiters in IDEL.NDEL

/SIZCOM/ System dependent parameters defining the "byte" lengths of
various element types. Block is defined in subroutine VARMV,
the parameters are defined at execution time in routine INIT,
overlay �,2!,

IWDSIZ 8! Parameter array! Contains the sizes in bytes for
the variable types:

 Parameter!
be "packed"
this may be
NCPI is l0,

IWDSIZ [1] Integer

IWDSIZ [2] Integer * 2

IWDSIZ [3] Real

The maximum number of characters that may
into a full integer. For some machines,
different than 1 and for the CDC CYBER,

IWDSIZ [4] Logical

IWDSIZ [5] Logical * 1

IWDSIZ[6] Unused

IWDSIZ[7] Unused

IWDSIZ[8] Unused

/STTCS/ Keeps track of intermediate values necessary for statistical
analysis of variables set by STAT or ONSTAT.
Defined by subroutine STPSUN in overlay �,0! and initialized
in subroutine STZER.

NTRVLS Number of observations on which statistics are based.

XMAX�0! Maximum value over interval.

XNIN�00! Minimum value over interval.

XSUM�0! Total value over interval.

XSQSUN�0! Total of variable values squared over interval.

IINTl Beginning year of analysis.

IINT2 Last year of analysis.

NNANS�0! Names of variables being analyzed.

IDSPL�0<2! Displacement and type of variables being analyzed.

Default scaling value for variables in the PLOT
queue. Default initialized at 100.

DEFNAX

Data transmission rate to the interactive terminal
and used to calculate delay times for graphic output.
The default is 1200 BAUD. IBAUD is not relevent for
graphic output other than an interactive graphics
terminal.

IBAUD

Unused.ICHCB

IDUNl Flag set to cause the echo of commands back to the
terminal. The default is 0.

/SUPCON/ SIMCON main utility common block.
Defined by subroutine SIMCON in overlay �,0! . Initialized in
subroutine INITER.

87

Unused.IDVN2

IDUN3 Graphic output device code:
l A Tektronix terminal.
2 GERBER plotter.
3 GERBER and Tektronix terminal.

Unused.IDUN4

IDUNP A switch, when set to l, causes the storing of the
blank common block on a random access file between
model iterations. The default is l,

IFAR Unused.

IGETV�0! Common block displacement table for variables to be
output.

Output display method code for variables in the
plotting queue:

1 Line printer plot.
2 Printed table.
3 Graphic display.
4 Not used.
5 Printed output onto alternate file FILE

function!.
6 Store values internally GET function! .

IGPLT

ILPLT Unused.

Represents the "year" of the zero'th iteration,
IYBEG is initialized at 0 and redefined by the
SIMULATE command.

IYBEG

IYEAR The iteration "year" counter. IYEAR is incrimented
from IYBEG to IYEND during simulation.

The "year" at which simulation is to stop. IYEND is
initialized at 0 and redefined by any simulation
command.

IYEND

LENGTL The length of the blank common block in "bytes".

The logical unit number to which output is sent. The
default is unit 6, the terminal,

The logical unit number from which to accept command
input. Unit 5 is the terminal< unit 1 is the
alternate BATCH file.

LUIN

IPLOTQ�0! The common block displacements for all variables in
the plot queue.

88

An alternate unit number to send output. Currently<
LUOUT is defined to be unit 6, the terminal.

LUOUT

The length of the SIMCON utility common block,
/SUPCON/ in "bytes".

LSUPCM

Unused.MHCB

The Tektronix graphic device for which graphic output
is to be formatted. The default is the Tektronix
model 4010. This parameter is not relevent for
graphic output to other devices.

MODTEK

The number of output variables currently stored in
the output work space.

NKEP

The number of print positions to use for a printer
plot. The default is 60 printer positions.

NL INK

The number of variables currently in the plot queue,NPLOT

The interval at which model states are stored if
switch IDUMP is on i.e. set to one! or output
presented for variables in the PLOT queue. If
NYSKIP = 1 output is presented at every iteration, if
NYSKIP = 2 output is presented at every other
iteration, etc. The default is every iteration.

NYSKIP

PLTNAX�0! A table of the plot scaling maximums for the
variables in the plot queue.

Unused.OFILE

A switch when on set to 1!, causes statistical
monitoring of all variables in the statistics queue
and the results presented at the end of the current
simulation. The default is off set to 0!.

OSTAT

VNAXS�0! A table of the plot scaling maximums for the
variables named on a command.

VNAME�0,10! A table of the names of the output variables
named on the last command.

NAMES�0,10! A table of the names of the variables in the plot
queue. May contain a maximum of 10 names stored as
Al formatted strings.

89

/SYSCOM/ System status utility common.
Defined by subroutine SYSFN in overlay �,0! .

IFLAG Set when attention interrupts occur and periodically
tested by routine SYSTAT.

/UINDEX/ Random access file utility common block. This block is
relevant only for CDC NOS systems.
Defined by subroutine UCOMTO in overlay �,0! .

INDEX�04! Index array for the common block dump file.

MACNDX�6! Index array for the macro library file.

/WKSP/ A general scratch area used mainly for open ended character
packing but sometimes far a general working area.
Defined by BLOCK DATA subprogram in overlay {0>0! .

IDUN *! An integer dummy variable dimensioned to about 100
integers or 200 packed characters, whichever is
longer,

/XPLT52/ Output utility common block, buffer, and work space.
Defined by subroutine LPLT5 in overlay �,0! .

STORE�0,101! Real array! Output buffer and internal storage
area for up to 10 variable elements for up to 101
saved iterations including the "zero'th" iteration! .

Output ready indicator. When set to 1, buffer is
ready to output.

I FPLT

The number of variable elements represented in the
buff er.

Output variable name location code:
1 Variable names are in the plot queue.
2 Variable names are in the list VNAME located in

common block /SUPCOM/,

IIWGRA

Function code:
1 Not used.
2 Not used.
3 Graphics display of variable against simulated

time.

II'

/VGTSCM/ An artifact that is used only by the subroutine VGTS! that
defines it.

90

4 Graphics display of variable l versus
variable 2.

/ZZZZ/ A working buffer for macro processing.
Defined by BLOCK DATA subprogram in overlay �,0! .

LIMSIZ Parameter! A maximum amount of space in integers
sufficient to hold an entire macro, It should be the
same length as the command stack array see common
block /CSTACK/! .

IBUFF *! An integer array dimensioned to LIMSIZ plus enough
space for 200 or more packed characters.

